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Abstract


Model form and estimated coefficients are presented for predicting five

year diameter, height, and crown base increment for some major species

groups found in the North Coast Region of California. Secondary

"modifier" models are also documented. In addition, crown base

estimators are presented for use in situations where this tree

characteristic was not measured.


Coupled with models presented in previous research notes, the

models and procedures described here constitute a complete equation

system for a distance-independent tree-based growth and yield model.
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I. INTRODUCTION


This research note provides a description and derivation of the

current state1. of a model system for predicting individual tree height,

basal area, and crown size increment of young growth redwood and Douglas

fir in the North Coast region of California. In addition, crown size

estimators are also described for use in situations where crown

measurements are unavailable.


These models constitute a major portion of the primary system of

equations used to drive CRYPTOS type computer programs (see Res. Note

No. 14)2. In the current vernacular of forest growth modelling, this

system can be classified as a distance in'ependent tree growth model.

Individual trees are the basic unit of forest growth analysis and

spatial distributions of trees are not explicitly recognized. Other

models needed to complete this system are mortality predictors (Res.

Note No.6), site index equations (Res. Note No.5), and tree volume

equations (Res. Note No.9).


This system has been designed to be independent of tree or stand

ages and can be used to model the growth of even or uneven-aged stands.


Figure 1. provides a conceptual schematic of how the models 
presented in this report are linked within the CRYPTOS program. 

These models represent a fourth generation attempt at developing

this type of a system. These models have been extensively tested and

are considered to give reasonable growth predictions, at least for stand

types from which the basic data was drawn. After some experience has

been gained with these models in operational situations, they may be

revised by pot~ntial users to reflect 'local' or alternative conditions.


II. SPECIES GROUPS


At an early stage in this study, eight species groups were

recognized for modelling purposes. The choice of species groupings is

essentially a compromise between a) relative abundance and commercial

importance of individual species; b) the availability of data for

modelling purposes; and c) relative similarities and differences in

terms of growth characteristics. These species groups are listed as

ful~w:


1) young growth redwood

2) young growth Douglas fir


1. As with any modelling effort of this type, the model system is

under a state of constant change and modification in light of new

and better data, experience gained through use of the system, and

subsequent evolution in the system design.

2. Research Notes are listed by number in the Literature Cited. 
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3) other young growth conifers (mostly grand fir but includes Sitka 
Spruce and Western Hemlock


4) Tan oak

5) Red alder


6) other hardwoods (mostly madrone)

7) old growth Redwood

8) other old growth conifers (mostly Douglas fir)


Based on a consensus of the Redwood Coop advisory panel, a someWhat

arbitrary decison was made relative to growth in old growth species

groups: old growth conifers are presummed not to grow, die, or in any

way change dimensions within single five year growth periods. ~is

decision was based on several factors:


1)	 There is a paucity of growth data for old growth species.


2)	 The growth on these trees is slow relative to young growth and it

was felt that developmental efforts should be concentrated at this

stage on young growth.


3)	 Most cooperators have indicated that most of their old growth

reserves will probably be liquidated in the next twenty years so

the "zero growth" assumption will not have much of an impact.


Hence, old growth species are considered part of the standing

inventory and contribute to comPetition of young growth species but have

zero growth and mortality


At this time, we have devoted most of our effort to the development

of increment equations- for young growth redwood and Douglas fir. Some

empirical evidence suggests that the growth of other conifers in the

region, especially grand fir (Abies grand is) , is very similar to Douglas

fir in growth habits. Coupled with the general lack of growth data for 
the minor conifers, our provisonal plans are to assume that they grow 

like Douglas fir. 

Hardwood species however are noticably different. Crown size

estimators have been developed for tanoak (Lithocarpus densiflora) and

are described later in this report. Growth models for tanoak however

are still being developed. ~e current lack of adequate data for alder

(Alnus rubra) has necessitated abandoning direct development of growth

models for this species. We may eventually develop some ad hoc

estimators later for the sake of completeness. ~e "other hardwood"

species group will eventually be treated as tanoak in terms of growth

and yield.


III.	 DATA SOURCES 

The data used to derive the model coefficients presented in this 
report has been drawn from an extensive record collection of permanent 
and temporary growth plots located in Mendocino, Humboldt, and Del Norte 
counties. All of these plots were within the redwood-Douglas fir forest 
type and situated in stands of predominantly young-growth timber. 
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Approximately 15% of the sample plots had one or more resi~ual old

growth tree. About 70% of the plots were from the coastal zone that is

subject to fog influence and the remainder from the somewhat drier

interior. Plots that were in the transition zone to the mixed conifer

forest type were excluded from analysis. With the exception of Jackson

State Forest in Mendocino County, all plots were located on private

forest land.


Plots were all fixed area plots ranging in size from one tenth to

one half acre. For approximately two thirds of the plots, subplots were

included for the measurement of smaller trees (less than 11.0 inches

DBH) .


Altogether, 512 plots were considered to be usable in one form or

another for model development. Approximately 25% of the available plots

had been partially harvested prior to measurement. 'lhese plots were

screened from a much larger set with rejections predominantly based on

the following items:


a) Data collection procedures were too extensive to give adequate

measurements on individual trees.


b) Collection procedures on ind iv idual plots were incompat ible

between measurements.


c) Plots were not located in stand conditions generally

representative of the coastal forest type or otherwise were felt

to be of limited analytical use (highways or landings were

located within plot boundaries; plots had been purposely located

in unusually exceptional stand locations; plots were located in

swamps, between cover type boundaries, or in situations where

the treatment history was not uniform throughout the plot; plots

were located in stands with exceptional amounts of wind throw,

animal or logging damage, landslides had occurred within the

plots, or in general, the plot was not representative of a stand

condition foresters would consider managing (pygmy forest land

for example)).


d) Minimum DBH's recorded on the plots were not considered to be

low enough to adequately represent the within plot stocking.


In general, not all plots were used equally in developing the

models presented in this report because of missing measurements or

otherwise did not provide the necessary measurements for analysis. The

general procedure followed in selecting trees from plots for modelling

was as follows:


a) Flag trees of a given species on plots that had all of the

measurements required for the model in question


b) Before further consideration, a check was made. to insure the

flagged subset provided a representative cross section of the

species on the plot
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c) Randomly draw a representative sample by species from this

subset for further analysis.


A further description of data adjustments and sample selection is

detailed in Appendix I.


IV. RATIONALE AND ARCHITECTURE OF THE MODEL SYSTEM


!. Data Requirements


The increment equations described in this report have been derived

from growth plot data and consequently, their primary purpose is in

modelling the increment of individual trees on plots or in some

situations, a "modified" stand table derived from several plots in a

particular stand. Application limitations and plot and tree information

which is required to provide input for these models is described in

Research Note No. 14. Briefly, this informatioh is comprised of the

following items:


1. Plot Information


Fifty year (breast high) site indices for the following species 
groups: redwood, Douglas fir, alder, and tanoak. Adequate functioning 
of the CRYPTOS programsrequiresall four site indices even though a 
particular species may not be present. Utilizing site conversion 
equations found in Appendix II of Research Note No. 11, the minimal 
amount of site information required to insure proper functioning of the 
models is either redwood or Douglas fir site index (see Research Note 
No.5). 

2. Tree Information


The tree information needed for model input consists of the

following items for each measured tree:


1) Species code

2) DBH to nearest tenth of an inch

3) Total height to nearest foot

4) Live crown ratio

5) Tree weight on a per acre basis


Foresters are generally familiar with procedures utilized to

convert plot tree measurements into total plot volumes or volumes by log

sizes. The purpose of the increment equations and associated computer

models is to provide some estimate of a tree by tree plot inventory

record if the plot had been remeasured at some time in the future.

Differences between successive plot inventory estimates provideB an

estimate of net plot growth.
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The increment equations described in this report are for a time 
span of five years. Predictions for multiples of five years are 
accomplished by a recursive process of repeated application of the 
increment models. 

B. Model System Architecture 

The tree growth model system is composed of four main increment

expressions for each species. These equations are used to estimate

changes in tree DBH, total height, crown ratio, and per acre weights.

Mortality enters the system by changing the per acre weights associated

with each tree. As implicit expressions, these equations can be

represent ed as:


CDS5ijkJ = fd!xdijkJ' Qdkl!Mdijkl


HG5ijkl = fh!Xhijkl' Qhkl!Mhijk}


CBG5ijkl = fc!xCijkl' QCk}


PDijkl = fp!xPijkl' QPk}


where


ijkl	 indices denoting the jth tree on the ith plot of the kth

species during the lth five year growth period.

Subsequent indexing of expressions is deleted for the

sake of conciseness.


CDS5	 Five year change in tree DBH squared, outside bark, in

square inches.


HG5	 Five year change in total height in feet.


CBG5	 Five year change in height to the base of the live crown 
in feet1. 

PD	 Probability of the tree will die during the next year2.


1. In field determination of crown lengths, trees with asymmetri

cal crowns or "holes" in the foliage were visually reapportioned

up the stem to get an approximation of an average complete crown

length


2. Tree mortality models were described in Research Note No.6.
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fd ,fh,fc,fp	 Denote corresponding implicit functions and will 

subsequently be referred to as structural components. 

xd,xh,xc,xp	 Denote vectors of explanatory variables used in 
estimating the appropriate increment variable. 

Qd,Qh,Qc,Qp	 Denote species specific vectors of structural parameters 
that are estimated from the data and determine the level 
of the increment estimate. 

Md,Mb Denote equation modifiers that are used to alter the 
predictions. An explanation of these equation modifiers 
will be given shortly. 

c. Estimates of -- the Future Tree -- List 

Given the set of models previously described, each tree represented 
in the tree list has its characteristics updated by the following 
conventions to get an estimate of what it would look like if it was 
remeasured five years later. '


Future tree DBH. If D1 is the current tree DBH, an estimate of its 

DBH five years later (D2) is given by 

2 1/2 
D2 = {D1 + CDS5} 

Future total height. If HT1 is the current total height, height 
five years later (HT2) is estimated as 

HT2 = HT1 + HG5 

Future crown ratios. If CR1 is the current crown ratio, the crown 

ratio after five years (CR2) is estimated by 

CR2 = {(CR1)(HT1) - CBG5 + HG5}/HT2 

Future ~ ~ weights. If the current per acre weight is W1' the 

weight five years later is estimated as 

W2 = W1 {1. - 5. (PD) } 

D. Development	 of Structural Components 

In developing the structural components of our increment equations, 
particularly for diameter and height increment, we have taken the point 
of view that the system of models being developed represents the 
interactions of trees with their environment (mainly other trees). By 
design and intended use of this system, we implicitly attach a causal 
interpretation to the models: a change in a tree's environment or 
characteristics through a simulated harvest or the normal course of tree 
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and stand development causes some form of tree growth response.

Consequently, we have designed these components to be biologically

interpretable and have relied mainly on crown size and crown ratios as

dominant explanatory variables as these characteristics are associated

with photosynthate producing capabilities of trees. Secondly, the major

use of this system of models is for stand conditions Which currently do

not exist (e.g. stands that might like to have but are currently

unavailable, or predictions far into the future for currently existing

~tands). Plausible predictions in these situations requires explicit

consideration of underlying biological processes.


The structural components of these increment models can be thought

of as having two parts: a) a tree potential and b) a reduction for

competition. Functionally, the tree potential represents the maximum

growth a tree could obtain given its current characteristics in an open

grown environment. As the proximity of other trees induces some form of

growth reduction, the competition component scales the potential growth

in a multiplicative fashion from relative weight of '1' in open grown

conditions towards '0' as the tree begins to become overtopped in dense

stand conditions. Our approach to tree competition is described in the

next section.


Development of the structural models (and the modifier equations as

well) essentially began with several explanatory variables and a general


idea of the direction and magnitude of their effects on tree gr~wth. The
availability of derivative free non-linear estimation packages1 however 

provides the somewhat dubious capability of constructing an almost 
unlimited number of explicit model forms. To make the task manageable, 
a preliminary data sorter was delveloped to aid in model construction. 
As input, this program accepts a series of ranges for each potential 
independent variable. For each possible combination of range classes, 
the program performs an intersection on the data and computes the 
average value of the appropriate growth variable. The net effect of 
this procedure is to essentially hold all other variables constant and 
provide some indication of the effects of one variable on growth. The 
program was also used to examine interactions among independent 
variables. This screening process provided an initial basis for 
developing explicit model forms. 

E. Modifier Development


Equation modifiers are used to incorporate two different types of

"random" factors into the model system. The first is considered the

"calibration" factor. It is quite unlikely that the model system


1. All non-linear parameter estimation in this report was accom
plished with the IMSL subroutine ZXSSQ. This subroutine was imbed

ded in a larger overlay routine prepared by the authors Which was 

used to summarize the estimation results and develop statistics 
comparable to the output of standard linear regression packages. A 
similar overlay routine utilizing the IMSL subroutine RLSTEP and 
relat ed software was developed for linear least squares parameter

estimation.
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presented here will exactly portray the growth of any tree or group of 
trees. Hence, when evidence is available to suggest that the system 
predicts low or high, this information can be used to adjust the system 
and produce more precise predictions. The methodology for accomplishing 
this is described later. 

A second type of "random" factor is incorporated to model 
unexplained variation in tree response. It would be somewhat heroic to 
expect a simple system of equations to be capable of totally explaining 
the development of all trees in a complex bilogical system such as a 
forest stand over periods spanning several decades. There will be some 
variation that cannot be accounted for. For example, the structural 
components of the increment equation for change in tree DBH squared 
accounts for approximately half of the total variation in the data. 
Hence, the unexplained portion is a substantial factor. We have found 
that for proper functioning of the system of models, the unexplained 
components of variation need to be explicitly recognized and 
incorporated. The reasoning for this may be clarified with the 
following example. . 

Consider a plot made up of saplings where all the trees are 
identical in terms of the characteristics incorporated in the models. 
Applying the increment equations to these trees would result in 
identical predictions. After a fifty year projection, all the trees 
would have the same predicted characteristics. However, we know this 
doesn't happen in practice. Trees differentiate into different crown 
classes presumably because some trees grow slower or faster than others 
due to items not specifically incorporated in the models (within-plot 
microsite differences, genetic variability, etc.). Competition 
subsequently acts to accelerate this differentiation. 

The fundamental problem is that plot volumes are noticeably 
different if we apply a tree volume equation to the "mean tree" versus 
summing the volume estimates made on individual trees and then taking an 
average. 

To circumvent this problem in forecasting, we adopt the following 
procedure, a variant of which was suggested by Stage (1974). 

a)	 As part of the initialization phase in projecting plot growth 
with this model system, each tree record in the plot inventory 
is tripled and the tree weights are reapportioned so the current 
standing plot inventory is virtually unchanged. 

b)	 Each of these records is then assigned percentage deviations so 
some of the trees are growing slower and others are growing 
faster than the predictions. These percent deviations are the 
equation modifiers for each tree and are 'permanent' for all 
subsequent growth projections. 

By this procedure, we attempt to mimic the variation that is 
actually inherent in forest growth processes and obtain more realistic 
projections. Procedures and models for modifier assingment are given in 
section X. 
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F. Error Components 

In fitting these increment equations to data, some explicit 
assumptions about the form of the error components in the model are 
necessary to develop appropriate estimation techniques, judge the 
adequacy of any model fit, and to suggest appropriate forms for 
equation modifiers. 

For either total height or DBH increment ( which we may in general 

refer to as IiJkl)' fitting the structural portions of the models to 
data produces res1duals with variances being approximately proportional 
to the square of predictions. 

This would suggest models of the following form would be 
appropriate. 

Iijkl = f!x, Sk}{1 + Uijkl} 

rather than the
with the Uijkl term representing a proportional error 
"usual" additive assumption. 

For analytical purposes in parameter estimation, weighting both 
sides of these equations with weights being approximately the inverse of 
of predictions can produce a transformed model with additive error 
terms. 

I*ijkl = f*lx, Sk} + Uijkl 

In judging the adequacy of any fitted model, there is a tendency to 
associate high "R2.. statistics and low overall root mean square 
residuals with supposedly "good" models. We have taken the view however 
that the random error term can be decomposed into several factors, some 
of which are important to the analysis and some of which can be 
considered noise. Table 1 provides a description of possible main 
components into which the error term in these models might be 
decomposed. The point we wish to make is that it is desirable for these 
models to account for as much variation as possible in describing growth 
differences between plots and between trees within plots. Variation due 
to random periodic effects or measurement error might comprise 
substantial proportions of the residual variation. However, there is 
little that can be done to explain these sources of variation. Even if 
we could, this would contribute little to the explanatory power of the 
structural component models. 

The following form was used as a model for the error term: 

Uijkl = aik + bijk +rijkl + gijkl 

with the definitions for these terms given in Table 1. Further details 
and rationale can be found in Appendix II. 

In estimating the structural parameter vectors in the increment 
models, unbiased estimates usually require some minimal assumptions 
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Table 1. Possible Sources of Random Variation In 

Source (symbol)


Plots(aik)


Trees(bijk)


Periods( Plk)


Replications(rijkl)


Measurements(gijkl)


Tree Increment Equations - main effects 

Description


Mean growth on individual plots over extended time


periods may depart from the regional norm. This

may be due to the inadequacy of site index as a

measure of productive capacity, site misclassifica

tion, or overall inadequacies of the model system.


Relative to aik' individual trees may consistently

grow slower or faster than other trees. This may

be due to genetic differences, soil related micro

site differences, or within plot density differ

ences not completely explained by model competiton

indices. This later component may be altered by

harvest operations which in itself can be con

sidered a random component. Data limitations how

ever have precluded specific consideration of this 
factor. 

Specific calendar periods may be associated with

climatic differences significant enough to influ

ence tree growth. Other periodic factors may be

biological such as widespread occurences of seed

production years when photosynthates are diverted

to cone production at the expense of stem develop

ment .


If periods are not significant soures of variation,


then repeated observations on individual trees can

be considered replications and short term fluctua

tions in tree growth can be considered replication

e rro r
 .


Unfortunately, the growth observations as well as


some of the explanatory variables used in modelling

were not recorded without error. It has become


evident in the analytical phase that this source of

variation is a major component of residual varia

tion and needs to be explicitly recognized.
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about the expected values of each random component in the error term. 
Usually, these assumptions are that each term has an expected value of 
zero and that the errors are uncorrelated with the explanatory 
variables. In totally controlled experiments, randomization in sample 
selection and assignment of experimental units to treatments is done to 
insure the reasonableness of these assumptions. However, in the 
situation we are dealing with, the majority of the data available for 
modelling can be classified as cross-sectional: the observations consist 
of single growth measurements on several trees. From this data base, 
the task is to construct a model capable of estimating a time series: 
several growth estimates on single trees. In this modelling--sItuation, 
is practically impossible to randomly select a sample that is unbiased 
in terms of the assumptions we would like to have concerning the errors 
in the models. This causes some problems in parameter estimation that 
are attributable to both (a) stand development characteristics and (b) 
sample selection. 

(a) Stand Development 

In developing the form of an increment model, it is difficult to 
hypothesise some growth relationship that is devoid of size 
characteristics of trees ( total height, crown length). When we select 
sample trees, these characteristics are given (e.g., we cannot assign 
the tree an arbitrary height or environment and observe its growth 
response.) If we are willing to make the assumption that some trees are 
inherently "better" or "poorer" than others in terms of factors not 
incorporated in our model such as genetic or microsite variablity 

(analyt ically, the combined variance of the Bik and bij k terms is 
nonzero), then this "lack of randomness" will tend to make our 
assumptions about the expected value of the error components invalid. 
Intuitively, we know that in the course of timber stand development, 
there is a gradual decreasd in the number of trees due to mortality. 
To the extent that some of the "poorer" growing trees in the stand are 
most likely to become suppressed and die the older the stand gets, the 
more likely it is that the survivors are the better trees. (Darwin said 
something like this). Secondly, even if a "poorer" tree were to 
survive, it is quite unlikely for it to reach say 200 feet tall in a 
time span short enough for it to be classed as a young-growth tree. 
Consequently, while we might postulate a model with the expected value 
of our error terms to be zero, it is extremely difficult to find a 
sample of forest trees that can satisfy this criteria. In itself, this 
might not create unmanageable statistical problems if no tree size 
characteristics were used as explanatory variables. If they are, then 
the explanatory variables will be correlated with the "true" error 
terms. It is well known, especially in econometric literature (e.g. see 
Maddala, 1977), that application of ordinary least squares in situations 
such as these produce biased estimates of model parameters. The 
estimated parameters will reflect two entirely different growth effects: 
1) a "real" effect that is postulated by the model and 2) a random 
effect that is due to upward shifts in the mean of the distribution of 
errors as trees as a whole get larger. 

As a somewhat simplistic expository example, assume the tree basal 
area growth (CDS5) is a linear function of crown length (CL) 
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CDS5 = bo + b1CL 

Also assume that the crowns of all trees extend to the ground and we go 

out and draw a random sample from existing trees stratified by ranges in 

crown length. In Figure 1. trees A,B,C come from the short crown length 

class, trees D and E from the medium class and tree F from the long 
length class. The solid lines indicate growth trends in the individual 

trees and the hyphenated line represents the overall population 
trajectory. We are hypothesizing that the upward shift in the 
population average between the short and medium class is due to say tree 
C either not growing fast enoughto be represented in the class or 
dying. The same may be said about the next group. The dashed line 
representsthe resultsof an ordinaryleast squares (OLS) fit to this 
data. It essentially goes through the mean of each group and reflects 
the crown length effect plus the shift in the error distribution. The 
trajectory represented by the hyphenated line is considered to be the 
real effect of crown length on growth. 

The impacts of this scenario are a matter of interpretation. If we

wanted to pred ict the average growth of trees of a given crown length in

a population represetative of our sample data, we could use our ordinary

least squares fit to accomplish this. However, if we wanted to use this

model to predict the growth of a specific tree or group of trees over an

extended period of time ,then the OLS model would be eroneous. In light

of what we described earlier about tripling our tree records so that

some trees would grow faster and some would grow slower, use of the

"real" crown effect model would accomplish approximately the same thing

as the OLS model: a greater proportion to the slower ~rowing trees

would die and the relatively faster growing trees would become those

with longer crowns. The major differences occur when we begin to

overlay harvest prescriptions on our model system. Use of the" real"

model system tends to prevent over predictions of response when we do

something radical like cut down all of the dominant and codominant

portions of the stand and leave only intermediate and suppressed trees.


(b) Sample Selection


The problem previously described, which we think might be general

in terms of growth analysis, is compounded in our specific case. The

vast majority of data available for our modelling purposes has been

drawn from historical records of existing permanent plots. Most of

these plots are from stands 20 years of age or older with most of the

detail in measurements being taken on sawtimber sized timber.

Consequently, our sample is deficient in small trees and most of them

tend to be intermediate or suppressed trees in stands composed of larger

timber.


Remedies to both of the problems previously described have required

estimation procedures that are a departure from direct application of

conventional least squares. A complete estimation scenario as well as 

the rational and analysis for the selection of the error models is given 
in Appendix II. 
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Earlier attempts to construct a model system ignored the problems 
previously described. The results were somewhat frustrating: frequent 
blowups would occur in attempts to simulate thinning response, the 
models were insensitive to items we felt should be major effects, and 
some of the estimated parameters had the wrong signs. The effects were 
often dramatic due to the exceptionally high growth rates of coastal 
stands. Our attempt to implement the type of model system previously 
descri bed by seperat ing the" real" effects from the error components in 
parameter estimation and overlaying a "modifier" scheme where deviations 
assigned to each tree are permanent for the life of the simulation has 
produced a yield prediction system that produces reasonable results. 

v. MEASURES OF COMPETITION 

It is generally recognized that individual trees in dense stands 
grow less than their counterparts in more open stands. Similarly, in a 
given stand, understory trees tend to grow less than overstory trees. 
Both of these observations allude to the more general phenomena of inter 
tree competition. Historically, distance independent tree modellers 
have attempted to construct competition measures based on (a) a measure 
of stand density (basal area, stems per acre, sums of diameters, etc.) 
and (b) a measure of relative size (ratio of tree to average stand 
diameter, percentile in the diameter distribution, ratio of tree height 
to dominant tree height). 

Our expe rience has ind icat ed that it is d iffic It to develope 
consistent and biologicaly interpretable measures of tree competition 
based on the density-relative size approach. Consequently, a somewhat 
different approach was developed for use in this model system. 

Canopy cover percent is a familiar concept to foresters 
particularly in remote sensing applications. It is frequently expressed 
as the proportion of the ground area occupied by the vertical projection 
of tree crowns. This figure represents canopy cover at ground level. In 
a more general sense, if allowances are made for crown overlap, it is 
quite possible for the canopy cover percentage to be greater than 100%. 
If we begin to take "horizontal slices" through the stand at different 
heights, the canopy cover percent will decrease until at the tip of the 
tallest tree, it is zero. If canopy cover percent is expressed as a 
functon of height above ground, different stand structures will display 
different "canopy cover profiles". Figure 2 shows representative 
profiles for even-aged, all-aged, and two storied stands. 

Intuitively then, this canopy profile provides an index of density 
at different heights on a given plot. It can be thought of as being 
related to average light availability at a given height above the ground 
and as such, provides some measure of competition. Before developing an 
exlicit competition measure, a description of the method used to 
quantify the canopy cover profile is in order. 

A. Computation of Canopy Cover Profile 

The basic information available for modelling the canopy cover 
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profile consists of total height and live crown ratio of each tree on a 
plot. From these two variables, we may easily compute crown length and 
height to the crown base. 

To use this information to develop a crown canopy profile, we need

to know the crown radius at different points throughout the entire live

crown on each tree. As this type of information is difficult and

expensive to collect, we have chosen to use a model to estimate crown

radii. Casual inspection of forest grown conifers indicates that the

crown profile of individual trees is somewhat parabolic above the zone

where crowns of adjacent trees begin to overlap. Below this point, the

profile is somewhat cylindrical because branch growth is retarded due to

poor light conditions and possibly mechanical effects due to branch


interlocking. '!he lowermost branches may even be shorter than higher

branches.


Mitchell (1975) developed a crown width model for Douglas fir in

the Pacific Northwest. Using coefficients he provides, the following

approximation can be obtained:


CWo = 22.503 (In (1./20 + 1)) + d. (1)
:1. :1. :1.


where 

Lj = Distance in feet from tree tip to a point 
"." 
:1. in the tree 

crown 

d'i = tree bole diameter in feet at point i


CWi = crown width in feet at point "i".


'!hisexpression is only for the portion of the tree crown above the 
general zone of branch contact. Sufficient data were ~navailable to 
estimate the coefficients in Equation (1) for each of the species groups 
we are modelling, however, a spot check with a small amount of data 
indicated that Equation (1) provided a fair approximation for young
growth conifers in the North Coast although there is considerable 
variation between trees. As the basic objective here is to develop a 
consistently applied index rather than an absolute measure, Equation (1) 
was used a basis in the following procedure for developing a crown 
canopy profile. 

a) The "di" term was assumed to be zero. '!hisintroduces a slight 
consistent underestimate but as the canopy cover profile is used 
as an index, this was not considered to be a significant 
problem. 

b) Equation (1) was applied to all eight species groups.


c) The equation was applied to the entire crown of each tree with

no ad justment for possible departures below the point of branch

intact.


d) The canopy cover pro fil e takes the form of a vector with
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consecutive elements representing canopy cover percent at 10

foot increments above the ground.


e) To provide estimates of this vector, equation (1) was applied to

each tree to estimate crown widths at 10 foot intervals. Each


of these crown widths was used to estimate crown area by

assuming cross sections were round. Multiplying the areas by

the tree weight divided by 43560 provides an estimate of the 
trees contribution to the crown canopy vector. Below the crown 
base, the contribution was assumed to be the same as at the 
crown base. 

Probably the most deficient aspect of the previous procedure stems

from assuming hardwood crowns are exactly like conifer crowns in

contributing to tree competition. Profile dimensions and light

penetration qualities are noticably different. To test wether this has

a significant effect, a hardwood conopy profile was also computed for

each sample plot used to develop tree increment equations and analyzed

in the modelling process. Results were inconclusive due to the small

number of sample plots that had significant numbers of both conifers and

hardwoods. A more conclusive analysis will have to wait until better

data sources become available.


B. Development of ~ Tree Competition Index


Our initial thought was to use the estimated canopy cover percent

at a point, say, in mid-crown of each tree as a measure of competition.

The crown size of a tree is directly related to its growth capabilities

and the degree to which it is shaded would be a measure of how much its


growth would fall short of the potential growth it could attain in an

open grown or full sunlight condition.


However, using mid-crown as a reference point would presume that

for two trees of a given height on an individual plot, the one with the

shorter crown would be assigned a lower competition measure. In

undisturbed stands, trees with relatively long crowns tend to be ones

adjacent to holes in the canopy and are in a relatively lightly stocked

position within the plot. Conversely, trees with shorter crowns tend to

be in relatively dense positions. This apparent anomoly in the

relationship between crown length and canopy density stems from not

recognizing spatial arrangements of trees. As a spmpromise, we have

chosen reference points independent of crown length. These points are

at some proportionate amount of total tree height. While not being

"perfect," it at least assigns trees of the same height within a plot

the same competitive index. Explicit forms of the competitive index are

detailed in the following sections.


VI. CROWN BASE MODELS 

There are some situations where projections are desired for plot

inventories that are deficient in the tree data required to run this

model. This section describes general models that can be used to
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predict missing crown measurements.


A. Uncut Natural Stands


In uncut natural stands, we have found a high correlation between

crown length and density which can be exploited to give reasonable

estimates of crown length. Once stands have been subjected to 
harvesting, this relationship becomes somewhat ambiguous and a different 

strat egy must be used. 

Model C-1


In this model, the crown canopy vector is initially estimated by

assuming the crowns on all trees extends to the ground. By linear

interpolation, the height at which the canopy closure is 80% is

estimated. This point was chosen because the 80% canopy closure height

was about the same wether we used actual crown lengths on trees or

assumed the crowns on all trees extended to the ground. This value was

then used in the following model:


HTCB = CP80{1-exp(~o + ~1Ht +~2Ht/Hm)}~3


where


HTCB	 height to the crown base of the subject tree in feet


CP80	 Height to an estimated canopy closure of 80% in feet.


Ht	 Total height of the subject tree in feet


Hm	 Average total height in feet of the largest 20% of the trees by

DBH on the plot.


exp(x)	 2.71828... raised to a power of . x'


<£i Species specific coefficients estimated by non-linear regression

methods


Sample trees were only selected from plots where the trees used to

compute Hm were essentially dominant and codominant trees. Two storied

stands were not used. Coefficient estimates and a statistical summary

are shown in Table 2. Coefficients were not obtained for alder or old 

growth because data were unavailable. A limited amount of data was 
available for the the" other young growth conifer" group but the results 

were very similar to Douglas fir. Consequently, we suggest all young 
growth growth conifers other than redwood be treated as Douglas fir when 

using these models. 
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Table 2. Coefficients and statistical summary for 
crown base model C-1. 

<:(0 <:(1 &.2 &.3 Sy.x 
R2 sample size 

Redwood -.065 -.0012 -2. 66 2.31 14.5 .68 1009 

Douglas Fir -.152 -.0196 -1.29 4.07 14.1 .84 488 

Tanoak -.157 -.0046 -2.79 3.72 11. 0 .39 108 

B. General Crown Base Models 

The previous model is for even-aged natural stands. In situations

where the stand structure cannot be reasonably classified as even-aged

or in stands where harvesting has occured, the following model has been


found to produce satisfactory results for trees in poletimber size

classes and larger.


Model C-2 

In this model, height to the crown base is estimated as a function 

of total height and tree diameter (DBH) 

HTCB = Ht! 1 - exp( &.0 + &.1DBH + &'2Ht)} 

Coefficientestimatesfor this model are given in Table 3. 
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Table 3. Coefficients and statistical summary for 
crown base model C-2. 

c{o c{1 <£2 Sy.x 
R2 sample size 

Redwood -.856 .021 7 -.0045 11.9 .77 1409 

Douglas Fir -.639 .0275 -.0066 14.3 .81 788 

Tanoak -.957 .021 -. 0049 7.6 .70 278 

VII.	 DBH INCREMENT MODELS 

A.	 Structural Components 

The DBH increment model uses five year change in tree DBH squared 

(Cm5)	 as the dependent variable and the structural portion has the form


CDS5 = (potential)(competition factor)


1. Potential 

After some exhaustive testing, relying extensively on preliminary

analysis made with the data sorting program as well as actual

performance tests, the "potential" portion of this model was specified

to have the	 form 

<£ 
(<£0 + <£1S){1 - exp«<£2HT + <£3(CL + HTG5))} 4 

where 

S = site ind ex of the appropriate species


HT = total height in feet


CL = crown length in feet


c{i coefficients to be estimated 

HTG5 = estimated future five year height growth in feet. 
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2. Competition Component 

After testing innumerable possible functional forms, a logistic

related function of canopy closure at different percentages of tree

height was chosen to represent the effects of competition. This portion

has the form


<£8 

1/{1 + exp(&5 + &6(CC66 + &7(CC40 - CC66)) )} 

where


CC66	 canopy closure (expresssed as a decimal) at a point equal to

66% of total tree height


CC40	 canopy closure at 40% of tree height.


«i	 coefficients to be estimated.


The logistic function was chosen because it has the property of

yielding almost constant predictions over a wide range of low canopy

closure levels yet still remains flexible enough to provide a reasonable

competition response curve throughout the range of canopy closure values

that affect tree growth.


Estimation Summary


Parameter estimates and some approximate statistics are g i v en in

Table 4.


DBH increment model coefficients were not obtained by direct

application of least squares so the measures of fit are approximations.

A data set not used in the estimation process, which consisted of a

balanced design of multiple growth measurements on trees within plots,

was used to estimate the variance components of the error term. A

complete description of the data set and estimation procedures are

detailed in Appendix II. These estimates are shown in Table 5. The most

notable item in this table is that the combined variance estimate of the


"replication-measurement" component comprises over half of the total

error variance. There was no direct way to segregate this estimate into

a replication variance and a measurement variance but indirect methods

(see Appendix II) would suggest that the measurement variance is about

75% of the combined estimate.


B. Calibration Factor Development.


In light of the estimation problems outlined earlier estimation

procedures were utilized that attempted to develop a regression surface

that was most proportionatal (parellel in the transformed model) to the

growth trajectories of individual trees over multiple growth periods.

In design then, the model response surface represents the "average" 
trajectory of trees in our sample. Because of presumed shifts in the
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mean of the distribution of errors, it is likely to overpredict for

small trees and underpredict for larger ones as a whole. The purpose of

the calibration factor is to scale the model to approximate the mean

response of all trees with characteristcs similar to the appropriate

tree in the plot list. In essence then, if we begin to model the growth

of a tree that has managed to survive and become "large", then the fact

that tree is already large indicates that the tree has superior growth

attributes and probably is growing faster than our model would indicate.

Conversely, the "average" tree in a young stand has less evidence to

suggest it might be a fast growing tree.


The most obvious tree characteristic to use as a calibration

variable is the tree's past growth rate. Indeed, this course will be

pursued and reported upon later. However, in situations where there is

no growth data available, current size characteristics offer one avenue

for the development of calibration factors.


Tree DBH was not used at all in the development of the structural

DBH increment model even though linear correlations of this variable

with CDS5 were slightly less than between CDS5 and crown length. Our

reason for excluding DBH from the model was twofold: 1) it is difficult

to come up with a biological interpretation for this relationship and 2)

in the intended use of this system (repeated solution of short term

increment equations), DBH represents a special function of a

"distributed lagged" form of the variable we are trying to predict.

This fact would result in an additional form of bias in estimation on


top of all the other problems previously mentioned.


Rather than use tree DBH as a "causal" factor in modelling, we view

it as the cumulative effects of the tree growth process. If we assume

that two trees of the same height and crown length on a given plot have

the same competitive stress (which is the rather coarse assumption built

into our model), then it would seem logical to assume that the one with

the larger DBH is also growing faster in basal area. However, to extend

the argument to say that the relative growth differences of two trees of

the same height, and crown length growing in identical environments (the

same site and competitive index as used in the model), yet situated in

different stands can be indexed by differences in DBH is somwhat

ambiguous. The size differences may be due to historical differences in

stand treatments or development. Practically, this ambiguity is one of

degree and we have attempted to develop calibration models that operate

consistently at the sake of some precision.


In terms of the error model outl ined earl ier


Uijkl = aik + bijk + rijkl + gijkl


we would like to develop explicit estimators for the combined plot and

tree effects as a basis for assigning growth modifiers to each tree in


the plot tree list at the start of a growth simulation. Analytically,

we seek a model of the form


Uijkl = Cd!Zdijkl' Qdm} + a*ik + b*ijk + rijkl + gijkl
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Table 4. Parameter estimates and a statistical summary 
for the DBHincrement model. 

Redwood Douglas Fir 

<£0 59.2 28.0 

&1 1.00 1. 99 

&2 . 00077 .00105 

&3 -.0129 -.0138 

&4 1.25 1.40 

&5 -4. 501 -1 O. 01


<£6 3.84 10.06


&7 . 11 .33


&8 .422 .127


R2 .49 .64


Sy.x 80% 61%

( pe rcent)


Sy.x 24.3 28.5

(square inches)


sample size 1228 723 

R2 statistics are based on residuals from the fitted regression 
in unweighted form with no adjustements for heteroscedasticity. 
Sample standard deviations expressed in square inches were also 
computed on the same basis. Standard errors expressed as a percent 
were computed by expressing each residual as a percent of the predicted 
val ue . . 

where
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Table 5. Estimated variance components of the DBH increment 
model for a balanced data subset. 

Source(component) REDWOOD DOUGLAS FIR 

Plots(6'a2) .114	 .008 

Trees( 6'b2) .189	 .093 

Replications plus

Measurements .322 .251


2 2

(6'r +6'g )


Redwood estimates were based on 53 plots, 8 trees within plots, and 2 
measurements per tree. Douglas fir estimates were based on 24 plots, 
6 trees within plots and 2 measurements per tree.

Cd	 =auxiliary calibration function that serves to reduce the 
combined plot-tree variance 

zdijkl	 =vector of explanatory calibration variables observed at

the start of a growth simulation.


Qdm	 =vector of modifier paramet ers


and the definition of :ik and b*ijk follow from


aik + bijk = Cd!zd, Qdm} + a*ik + b*ijk 

In essence, we are assuming that the calibration function does

nothing in accounting for the combined "replication-measurement error"

random effect. One basic problem in estimating the parameter vector Qdm

is that the true error term, Uijkl' is unobserved. Consequently,

residuals from the DBH increment model, expressed as percentages

(decimal equivalents) were used instead.


In the intended use of the entire growth model system, a tree list 
from an inventory plot is the minimal amount of tree information needed 
for subsequent growth simulations. However, additional information may 
be available in the form of total basal area growth by species 
components or more detailed data on past growth performance. Which 
degree	 of input data is "best" depends on the purpose for which
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projections are being made and in many cases, is limited by what has

been collected in the past.


To facilitate different types of calibration data and subsequent

revisions of modifier equations, our approach consists of two

independent equations: one for between plot species components (plot

effects) and one for within plot species components (tree effects).


1. Between Plot Calibration Model


In this analysis, one single measurement period for all available


growth plots1 were used to estimate aik (the percent deviation) for each

plot with at least ten trees of the appropriate species. The following

model was subsequently developed:


aik = ~Ok(HTik - HTk) + ~1k(Sik - Sk)


where


aik	 = predicted mean percent deviatjon in CDS5 of all trees on


plot i of species k.


of species k in

HTik	 = mean total height of all trees on plot i


feet.


HTk	 = mean average sample plot height of species k in feet.


Sik	 =site index of species k on plot i.


Sk	 =mean site index of species k.


!Bjk	 = regression coefficients to be estimated.


The estimated coefficients and overall mean heights and sHe

indices are shown in table 6.


2.Within Plot Calibration Model


Analysis of residuals expressed as percent deviations from the

respective plot means has indicated that variables such as ratio of tree

diameter or total height to plot means are the most hightly correlated

variables, particularly in even-aged stands. However, these varibles

are somewhat ambiguous as explanatory factors in multi-storied and

uneven-aged stands or stands that have been harvested. As the models

developed are intended to operate in any type of stand structure and are

independent of age, a ,model with a lesser degree of precision but more

consistency in stands of variable structure was chosen as a reasonable


1. This same plot set was also used to adjust coefficients in the 

base DBH increment models to reflect "average" growth rates of the 
entire region. (see Appendix II for details). 
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Table 6. Estimated coefficients and mean heights and site indices

for the between plot calibration model.


mean
mean height site index

180 :B1


(feet) (feet)


Red wood .0023 -.0031 88.5 111.6


Douglas Fir .0029 -.0025 101.7 137.9


compromise. This model was fitted to each species component for all

available growth plots in the form:


tijkl = ~iko(HDRijkl - HDRikl) + ~ik1(CRijkl - CRikl)


where


tijkl	 = Uijkl - aik


HDRijkl	 = (total height -4.5)/DBH ratio of the subject tree


HDRikl	 = mean plot (total height 4.5)/DBH ratio of

species k.


CRijkl	 = live crown ratio of the subject tree


-

CRikl	 = mean live crown ratio on the plot of species k.


IBij 0 '~ij 1	 = plot specific parameters to be estimated.


Coefficients for this model were estimated for each of the pJots

and species groups used to estimate the between plot calibration

function. For each species group, the estimated coefficients for each

plot were "stacked" into a single equation system and subjected to

generalized linear least squares estimation procedures using the

individual plot estimated variance-covariance matrices as weights, to

obtain" average" values for the coefficients.1 These estimates are shown

in Table 7.


1. This procedure, sometimes call the Zellner method, is described

in Maddala, 1977.
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Table 7. Mean estimated coefficients for the within 

plot calibration model. 

REDWOOD DOUGLAS FIR 

:So -.205 -.265 

-.266 -1.082:S1 

The data set previously described that was used to estimate 
variance components based soley on the structural portion of the model 
was once again utilized after taking into account both the structural 
and calibration components of the model. The estimated variance 
reductions are shown in table 8. The plot and tree variance components 
have both decreased the most noticable reduction being in the trees 
wi thin plots variance estimate. As evidence that the model formulation 
and analysis is reasonable, we note that the replication-measurement 
error variance component is virtually uneffected. 

Table 8. Estimated variance reductions of the DBH increment

model due to calibration models.


Source (component) REDWOOD DOUGLAS FIR 

percent reduction 

Plots 
2 

(<5'a ) .07 .09 

Trees(<5'b 
2 

) .55 . 47 

Replications plus 
Measurements -.01 .02 

2 2 
(<5'r +<5'g ) 

Redwood estimates were based on 53 plots, 8 trees within plots, and 2 
measurements per tree. Douglas fir estimates were based on 24 plots, 

6 trees wi thin plots and 2 measurements per tree.
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Calibration Discussion 

One problem that we anticipate in practical ~se of this system is

using the between plot calibration function for stands that have been

harvested prior to the time when plots are measured for subsequent

growth projection. Harvests tend to alter the respective plot means

whenever the harvest prescription is "non-random": For example a low

thinning tends to favor the bigger and "better" leave trees and a

"diameter limit cut" tends to leave trees which are as a whole, "poor".

The use of mean height in even-aged stands for a given site and age is

one possible way to provide a more refined alignment. However, age is

not used as a variable in this model system and it is somewhat ambiguous

in multi-storied stands. Preliminary analysis indicates that the

problem is not nearly as severe in stands that have been moderately

thinned from below or thinned for spacing as it is in stands that have

been "severely thinned from above". In stands that have been subjected

to past harvesting, we currently recommend that some actual growth data

be used to effect a local calibration. In the absence of this type of

information, defining site index on the basis of the trees that are

standing is a currently recommended ad hoc remedy.


VIII. TOTAL HEIGHT INCREMENT MODELS


Most historical research in height growth has centered around the

developnent of site index curves. It is generally recognized that

height growth, particularly of dominant and codominant trees is much

less sensitive to changes in competition and crown size than is diameter

growth. Hence, the primary determinant in estimating future height

growth is based on cumulative past height growth of a group of "site

trees" in a given location and is called "site index". '!be site index

models used in this study were developed for redwood in Research Note

No.5 and conversions of site index equations of other species to this

model form were described in Research Note No. 11.


A. Structural Component Development


The height growth model uses five year change in total height in

feet as the dependent variable. The general form of the structural

component is the same as the DBH increment model


HG5 = (potential)(competition factor)


In addition to the possible sample biases and estimation problems

previously discussed in conjunction with DBH increment models, the lack

of precision in estimating height growth has created some severe

problems in judging the adequacy of any postulated model. All of the

measurements of height growth have been derived from successive

differences in total height measurements taken on two occasions. In

general, measurement techniques involved chaining ground distances and

subsequently, using a hand held clinometer to measure total height. In

several instances, measurements were rounded to the nearest fivE! feet

which is probably stretching the limit of accuracy of clinometers on

trees in excess of one hundred feet tall. Coupled with the fact that it
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is often difficult to even see the tops of trees in coastal stands and, 
once trees achieve heights of over 150 feet, height growth is roughly of 
the same magnitude as the rounding fraction, it was not too suprising to 
find that about 20% of the height growth mesurements were either 
negative or over 2.5 times the rates indicated by site index curves. 
However, it was the only data available. Another interesting item which 
has confounded any direct attempt to derive estimates of vairiance 
components is that on several plots, the majority of trees measured had 
"negative" or extremely slow height growth or were all "growing" 
excessively fast. 

1. Height Growth Potential 

Data inadequacies have prevented the use of techniques described 
for DBH increment models in remedying possible sample biases. Hence, we 
have assumed that growth patterns depicted by site curves are at least 
adequate in portraying the growth trajectories of dominants. We further 
presume, that given an age and site index, the "average" tree grows some 
proportional amount of a comparable site tree. As age is not used in 
this model, we adopt the following conventions: 

( a)	 Our site index curves give total height in feet (HT) of 
dominants as a function of site index (S) and breast high age 
(BHA). Implicitly, 

HT = fh(S, BHA) 

(b)	 Manipulate the basic site index equation to express age as a 

function of height and site index. 

BHA = fa(S, HT) 

( c)	 For each tree, we presume it is a dominant to ge~ an 
"estimated" breast high age (EBHA) by using its current height 
and site index. 

( d)	 If the tree were a dominant, its five year height growth 
(DHG5) could be estimated as 

DHG5	 = fh(S, EBHA + 5) - HT 

As a whole, trees grow somewhat less than DHG5 and, and some point, 
reductions in crown ratios begin to have have an impact on height 
growth, the "potential" portion of the height growth model has the form 

c{1DHG5/{ 1. + exp( -2.95 + c{2CR)} 

where 



-----------------------------------------------------------

-----------------------------------------------------------

-------------------------------------------------------------

- 30 -


CR = live crown ratio 

~i = coefficients estimated by non-linear regression 

2. Height Growth Competition Factor 

The height growth competition factor uses the same approximate form 
as the DBH increment model only the density term in the exponent of the 
logistic function is a single linear function of the canop,y closure at 
66% of total tree height 

1/{1 + exp(~3 + ~4CC66)} 

Estimation	 Summary 

Parameter estimates and a statistical summary of the height growth 
analysis are shown in Table 9. 

Table 9. Parameter estimates and a statistical summary 
for the height growth model by species. 

REDWOOD	 DOUGLAS FIR 

1	 1.09 1. 19 

&2	 -17.30 -19. 03 

-1. 42 -1. 71 3 

4 .61 .51 

R2 . 14 . 11 

Sy.x .44 .39 
(pe rcent) 

sample 588 374 
size 
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Low R2 values are considered to be largely a reflection of 
measurement error rather than a reflection of model inadequacy. In 
addition to measurement problems, the estimation process was confounded 
by an excessively lopsided sample: approximately 70% of the available 
sample trees were dominants or codominants. Stratifying the sample by 
crown class and developing separate estimates indicated the crown ratio 
and density related parameters were fairly uniform (after taking into 
account the high degree of correlation between the parameter estimates) 
With all other parameters fixed, the parameter ~1 can be considered a 
scaling factor to represent the growth rates of all trees relative to 
DHG5. '!he problem is that with most sample trees being dominants and 
codominants, the estimate based on all sample trees was considered to be 
biased upwards. Consequently, the following procedure was resorted to: 

( a)	 The available sample, consisting of at most six trees per 
species per plot, was used to estimate the coefficients in the 
model. The observations were weighted by DHG5 to produce an 
approximately homogeneous residual variance. 

( b)	 On 37 plots for redwood and 26 for Douglas fir with at least 
fifteen trees of the appropriate species, all of the trees had 
been measured for height growth. Most of these trees lacked 
crown size measurements so they were estimated with the models 
previously described. For each plot, the provisional model 
described. in (a) above was used to predict height growth for 
each tree, deviations were computed as a percent, and the 
average percent deviation for the entire plot was subsequent] y 
estimated. 

( c)	 The grand average was then used to adjust the original 
estimate of ~1. '!he adjusted values are what are shown Table
9. The overall net effect of the adjustment was to reduce the 
original estimates by about fifteen percent. 

B. Calibration Factor Development 

Development of height growth calibration models is analogous to 
that of the DBH increment model. However, an added concern is that the 
random variables in the height increment equation are probably not 
independent of their counterparts in the DBH increment models. In order 
to maintain reasonable relationships in the simulated height and DBH 
distributions after several decades of projections, possible 
dependencies must be maintained. 

One possible strategy to account for these correlations in the 
calibration model would be to develop a calibration equation for the 
height growth models using procedures analogous to those used for the 
DBH model. Simulataneous procedures could subsequently be employed 
whereby the residuals from both equations could be utilized in 
estimating parameters of some appropriate bivariate relationship. '!his 
was not attempted as the height growth data is severely contaminated 
with measurement errors. Including the measurement error as a 
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proportional effect in the DBH model was considered reasonable for rea
sons described in Appendix II. In the case of the height increment 
model however, measurement error tends to increase with tree height, and 
growth tends to decrease. This condition plus the inordinate amount of 
measurement error in height growth would prevent any reasonable attempt 
at covariance estimation. A second practical aspect however is that 
when users of this system attempt to develop their own calibration fac
tors, height increment will seldom be adequately observed. Most auxili
ary data for calibration purposes will be in the form of tree and plot

basal area growth. Consequently, height growth calibration models were

developed as conditional functions of the DBH model residuals.


1. Between Plot Height Growth Calibration Model 

In this model, we presume that the plot effect for height growth a

linear function of the plot effect for DBH growth. Specifically,


ahOk = lB(ado k)l I l


where ahik is the height growth plot effect and adik is the DBH growth

plot effect. Both of these variables are assumed to have means of zero.

Estimated mean plot deviations are unbiased but because they are esti

mates of a random variab1"e, unadjusted sampling variances are biased.


Consequently, least squares estimate of the parameter ~ using the


estimated ~ean plot values is biased. (The bias is due to an overesti
mate of 6'd ). 'fuebias can be reduced by increasing the number of sam
ple tree~ on each plot. A theoretical adjustment was considered but it

was abandoned because of addition~l data problems. Instead, median esti

mators, as proposed by Wald (1940) was considered appropriate. In this

method, the data is ranked by the estimated mean plot deviation from the

DBH model. The data is then divided into two groups with the median


being the point of separation. Subgroup means are then computed as ad1

and 8d2. Analogous height growth counterparts are ah1 and ah2. ~ lS

then estimated as.


~ = (ah2 - ah1)/(ad2 - ad1) 

The coefficient :B was estimated with two data sets:


(1)	 Predictions for height growth and CDS5 were made for each tree

used to develop the unadjusted height increment model. On


plots with six available sample trees, average deviations for

both models were taken to be estimates of height and DBH model


plot effects. These estimates were centered to the overall

sample mean deviation.


(2 )	 The same procedure was followed with the plots used in adjust

ing the height increment model.


Both data sets produced comparable results so they were pooled and

the subsequent estimate for ~ was .14 for redwood and .11 for Douglas

fir.
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2. Within Plot Height Growth Calibration Model 

In this development, residuals from both height and DBH increment 
models were expressed as deviations from estimated plot means. We 
denote these est imat es as t h " " I and t d respectively. For eachlJ ijl 
species, a model of the form 

h. ., = iB(bd o

J')unlJ I 1 

was used. A preliminary graphical and correlation analysis as well as a 
general lack of theoretical guidelines indicated that anything more than 
a linear relationship would be stretching things a bit. Unlike the JSF 
data subset, a sufficient ~umber of trees with repeated height growth 
analysis were unavailable for analysis. Consequently, with only single 
paired measurements, we can only get an estimate of the combjned tree 
effect plus replication effect plus measurement error. Three possible 
methods estimating the coefficient ~were subsequently considered. 

(1)	 Two-stage estimates. In this method, the within plot calibration 

equation for the DBH increment model was used to predict bdij which 
was then used as an indepedent variable. This was done using 
coefficients for the individual plot estimates as well as the 
weighted" averages" shown in table 7. The results were in general 
poor as they indicated almost no significant relationship between 
height and DBH growth tree effects. We could conclude that there 
wasn't any significant relationship and therefore that the height 
and DBH increment model tree effects were independent. This wasn't 
considered too tenable. As a plausible reason for the lack of 
correlation,we might interpretthe DBH calibrationmodel as, for a 
given height and crown ratio within a plot, the bigger the tree in 
DBH (the smaller is the height-DBH ratio), the bigger is the DBH 
growth tree effect. However, for a given DBH and crown ratio, the 

taller the trees (greater height-DBH ratio), the greater is the 

height growth tree effect. In any event, this approach was

abandoned.


(2)

Least Squares Adjustments. In this method,the estimates of thijl 

were regressed on the estimates of tdi'l for all plots combined for 
the data set used in estimating the inrtial height growth model. 

Denote this estimate as ~o~s. The limiting value to which this

estimate tends in probability (denoted as plim ~ols' see Johnston,

1963) is


plim ~ols = COV(thijl' tdijl)/VAR(tdijl)


If we are willing to make the assumption that the covariances between

the height and DBH replication and measurement effects are zero and all

of the random effects are identically distributed between plots, then


222

plim ~ols = COV(~, bd)/(~bd +6rd +6gd )


and the theoreticalvalue of ~ is 
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2

~ = COV(~, bd)/~bd


Hence, in the limit


plim ~ols jB/(1 + VR)


where


2 2 2

VR = (<:rrd +<:rgd )/<:rad


These results suggest the following estimate of ~


~ = ~01s(1 + VR)


where VR is estimated from variance estimates provid ed in Table 5.


Empirical results were as follows:


Red wood: ~ = (.251)( 1 +1 .704) = .68


Douglas fir: ~ = (.098)(1+2.690)= .36


(3)	 Median Estimators. In this method, the plots used to adjust the

height growth model were utilized. Two separate sorting varaibles

were used in separate trials: tree diameter and tree height. The

median of each variable was used as a point of separation and

median estimators as previously described for the between plot

height growth calibration model were developed. For the diameter


sort,the estimatesof ~ were .54 for redwoodand .30 for Douglas

fir. For the height sort, the respective estimates were .62 and .37

respectively.


The last two methods of estimation, while being based on entirely

different data sets were suprisingly similar. Hence, we concluded that


estimates of the coefficient ~ of .65 for redwood and .35 for Douglas

were reasonable.


One last estimate that will be needed in the modifier construct~on

is an estimate of the variance of the within plot tree effects (~bh ).

The method used was dictated by the data that were available.


We initially assume that the largest 20% of trees in DBH on sample

plots also represent the the upper 20% of the distribution of the height

growth tree effects. Secondly, we assume this distribution is normal.

Plotting of within plot residuals indicated that this is a reasonable

assumption for Douglas fir. For redwood the distribution is somewhat

skewed and a gamma distribution might be more representative but

normality was assumed for practical purposes.


For each species separately, each plot used to adjust the height
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growth model was sorted on DBH and the mean value of residuals centered

to plot means was estimated for the largest 20% of the trees (HG20).

~ integrating and manipulating the normal probability density function,


the following estimate of ~bh can be obtained.


~bh = .2(sqrt(2w)(HG20)/exp!(-1/2)(.842)}


Individual plot estimates were weighted by the number of trees measured

on the plot and averaged to form pooled estimates. The results were .19

for Douglas fir and .27 for redwood. After adjusting for differences in


reporting, the estimate for Douglas fir was very close to that estimated

by Mitchell (1975) for Douglas fir in the Northwest so is was concluded

that	 the estimates were reasonable.


IX. CROWNRECESSION MODELS 

Crown length-crown ratio relationships playa major role in the DBH 
and total height increment equations. Consequently, crown recession 
models are a fundamental component to the model system, particularly 
when yield predictions are being made for several decades. To our 
knowledge, there have been no direct attempts to develop crown change 
models with the dependent variable being change in height to the crown 
base. Other modelers have used indirect methods such as (1) assumed 
branch mortality (Mitchell,1975); (2) estimating crown ratios from other 
stand variables (Holdaway et.al.,1979, Daniels et.al.,1979) and (3) 
developing crown length estimators and partially differentiating the 
equation so presumed change in crown length is a function of changes in 
other variables such as tree height (Stage, 1974). 

These attempts were probably motivated out of necessity as an

adequate data base on crown recession is almost universally a scarce

commodity. Our attempts to use indirect methods in modelling this

aspect were abandoned because of ambiguities and inconsistencies in

application. For example, if the crown ratio on individual trees is

estimated as a function of stand density, a harvest wouldn't actually

result in an immediate effect on crown ratio of the residual trees but


the predictions would indicate it had. A direct attempt was made to

model crown recession based on data derived solely from Jackson State

Forest CFr plots. A description is provided in Appendix I.


Modelling crown base recession presents a challenge because of

several reasonable but contradictory observations that can be made:


1.	 In general, crown bases are much higher in dense stands than in

moderately stocked ones. Presummably then, crown recession rates

were much faster in the dense stands


2.	 Within stands, there is presummably a gradient of light

availability that decreases with height. Height to crown base in

intermediate and suppressed trees is usually less than in the

dominant-codominant stand fraction. So it would seem that even


though the suppessed trees are under more light competiton which 

would tend to be positively correlated with the crown recession, 
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actual change in height to the crown base is less for these trees

than the somewhat lesser light stressed dominants.


At the risk of oversimplification, we offer the following scenario

to provide a basis for model development. Trees with long crowns tend

to be more sensitive to light competition than trees with shorter

crowns. The lowermost branches on long crowned trees contribute

proportionately more to branch maintenance than to bole growth and do

not seem to be vital to the trees existence. In shaded conditions, net

photosynthesis in these branches may be negative and consequently, they

are somewhat more dispensable than lowermost branches on short crown

trees. Trees that are growing rapidly in height also tend to have

faster rates of crown recession. Casual inspection of undisturbed

evenaged stands indicates a somewhat uniform crown base line through the

dominant-codominant stand portion. However, crown basis on the

noticably taller trees are somewhat higher even though the overall crown

length may be greater. Presummably, faster growing regions of the tree

(particularly those above the main canopy) use much more water at the

expense of supplying water to the lowermost branches. This may

accentuate the crown base recession.


While not being a total biological representation, the following

model has been found to be adequate in practice.


CBG5 = [Q1CL + Q2HTG5!]/!1 + exp(Q3+Q4CChtcb)} 

where


CBG5 = five year change in height to crown base


CL = current crown length


HTG5 = estimated five year height growth


CChtcb = estimated canopy closure percent at the crown base.


~i = coefficients estimated by non-linear regression.


An estimationsynopsisof given in Table 10. 
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Table 10. Estimated coefficients and summary statistics 
for the crown recession model. 

REDWOOD DOUGLASFIR 

c(1 . 119 .138 

&2 .128 .279 

&3 -17.1 -6.59 

&4 14.4 6.70. 

R2 .31 .51 

Sy.x 2.7 2.9 
( fe et) 

sample size 357 108 

x. SIMUATION INITIALIZATION AND PSEUDO-STOCHASTIC STRATEGIES 

The previous description of the model system and parameter

estimates (coefficients and variances) provides the quantitative

material necessary for implementation of the tree growth system. This

section describes the current state of recommended operating procedures.


The modifier functions used in this system are intended to

represent unobserved factors which we consider to be random in real

stands of trees. Without these functions (i.e., predictions of tree

growth are made with the structural models only) differentiation into

size classes is retarded and, most importantly, harvest responses tend

to be sluggish. Secondly, the form of the modifier functions provides

an analytical basis for incorporating actual past performance data in

calibration to a specific stand of trees.


At this stage in the developnent of this model system, we feel 
there are a few important criteria that should be considered in the 

development of the equation modifiers. 

Replicability. If a given tree list entered is into this model system 
and subsequent growth simulations are made, the results should be the 
same if the same process is repeated in a different computer run. 
Hence, while we attempt to incorporate random factors in stand 
development, the assignment of random factors should have the element of 
replicability. For lack of a better term, we refer to this as a 
"pseudo-stochastic" feature. 
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Operational Efficiency. As noted earlier in this report, a tripling

process is incorporated to approximate the distribution of the

unobserved tree effects in growth simulations. Essentially, we are

attem~ting to mimic the joint distribution of two correlated random

effects: the within plot random components of height and DBH growth. To

adequately saturate the bivariate probability space would require much

more than a tripling of tree records. However, operational computer time

is directly related to the number of tree records and a lag in response

time is somewhat annoying when the system is operated in an interactive

mode. A more practical problem is that if the system is used to update

an entire inventory, the resulting tree lists tend to grow

exponentially. Since storage and manipulation of large data sets

represent a limitation on models of this type, improved methods of data

condensation should be investigated. Hence, our current procedure of

trebling the initial tree list is a compromise that is still being 
investigated although preliminary tests indicate some degree of 
adequacy. 

A. Initialization Strategies


With no actual information on plot or stand performance available,

the following proceures are used as an initialization phase in

simulation.


(1)	 All trees in the initial tree list are assigned height and DBH

growth modifier value of "1". Mean height by species components

are determined, the between plot DBH and height calibration factors

are computed, and the resulting estimates are added to the current

modifier value.


(2)	 The within plot calibration models are then used to make

predictions of the DBH tree effects and subsequently used to

estimate the height growth tree effects. These estimates are then

added to the current modifier value of each tree.


(3)	 The within plot tree height growth effect estimates are then used

to estimate the amount of variation acounted for by the height


growth calibration model. This estimate is then subtracted from

the estimate of the within plot height growth variance given in the

last paragraph of Section 8 to obtain an estimate of the


unaccounted 2for variation in the within plot height growth tree

effects ('3'bh)


(4 )	 The tree list is then tripled and the tree weightof each triplet 
is reduced by 20%, 60%, and 20% respectively. Nothing further is 
done to the tree DBH modifiers. The height growth modifier for the 
trees receiving 60% of the original weight are also unaltered. 
Relative to the current height gro"ilthmodifier value, one tree 
receiving 20% of the original weight is assigned a "pseudo
stochastic" component of 

'3'bh! exp( (-1 /2 )(.842) }/ ( .2) ( sq rt ( " ) ) 
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which is the mean of the upper 20% of a n~rmall:y distrib~ted random 
variable with mean of 0 and variance ~hh. Th1s value 1S added to 
the current modifier of the tree. For -the other triplet member 
receiving 20% of the weight, the value is subtracted. 

While this procedure is somewhat simplistic, subsequent simulation 
tests have indicated that the resulting stand differentiating 
characteristics and harvest responses seem reasonable. Future analysis 
is being designed to provide a more objective evaluation of the 
proced ure. 

XI.PRELIMINARY EVALUATION AND FUTURE PLANS 

Currently the entire model system for redwood and Douglas fir has 
been coded into an interactive computer program designated CRYPTOS.(see 
Research Note 16). Extensive tests have indicated that the model system 
performs quite reasonably for evenaged stands. A sample of possible 
results that can be generated by the model system are documented in 
Research Note 18. Since Research Note 18 was published, parts of this 
model system were modified in light of a preliminary evaluation. 

Preliminary validation studies have also begun where simulated 
versus actual plot development aver periods of 20-35 years were 
compared. At this stage, the rigor of these comparisons has been 
limited to visual inspection. However, we feel that these initial tests 
have indicated a high degree of model predictability particularly in 
mimicing the interactions of redwood and Douglas fir in mixture. 

In another experiment, the Douglas fir component of this system was 
tested against results that were obtained in Washington (Chambers, 1980, 
Wiley and Murray, 1974). The sytem produced consistent overestimates 
when compared to the growth tables of Chambers by about 10% in basal 
area and cubic foot volume. While some degree of difference is expected 
soley on the basis of different methodologies, Schumacher (1930) also 
noted that Douglas fir in California tended to be larger in DBH than in 
Washington or Oregon. Temporarily reducing the structural equation for 
CDS5 by an amount necessary to replicate the ten year basal area growth 
predictions of Chambers for the mean stand of his data set1 and 
subsequently comparing our predictions with his over a wide range of 
density and site classes indicated a high degree of compliance. We feel 
that the results from these comparisons supported our overall model 
design because the data for Douglas fir came almost exclusively from 
mixed stands. Average plot composition of Douglas fir by basal area was 
about 35%. 

Our future plans are to develop some objective criteria for judging 
the adequacy of the model system and to further test it against as much 
historical data as is possible. In the course of this procedure, we 

1. Chambers models were for entire stands of natural Douglas fir. 
To convert his stand information into the necessary tree detail 
needed to operate the CRYPTOS model, representative tree lists 
were generated with the program GENR(Research Note No. 17) 



- 40 


will also investigate several possible methods of calibrating the model


system to specific stands When some prior growth data is available and

make appropriate recommendations to potential users.
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APPENDIX I


Preliminary Data Adjustments


In addition to the information described in Section II which is

needed to drive the model system in applications, the plot sample data

used to develop the basic growth models requires increment measurements

on tree DBH, total height, and height to the crown base. With the

exception of height to the crown base, this data set was acquired by

differencing repeated measurements on permanent plots or (for DBH

increment only) directly from increment cores after adjusting for short

term changes in bark thickness.


On most of the sample plots, total height and crown size

measurements were confined to a subsample. Trees that eventually became

data points in model deyeropment were selected from this subsample.


Use of the canopy cover vector to develop density measures required

that (at least) estimates of crown length and total height be available

for each tree on the sample plot at the initial measurement. To

accomplish this, several local height- DBH regression equations as well

as the "generalized" height-DBH equations (see Research Notes Nos. 8 and

12) were developed for each species on each plot. For each plot, each

local model was plotted against the actual data with the aid of an

interactive program on a computer terminal. One equation was

subsequently selected on a visual basis with the primary emphasis being

on reasonableness of predictions throughout the range of diameters on

the plot. For species represented by only a few trees on the subject

plot, the tree samples were merged with a more abundant species. The

same processwas repeatedwith a height to crown base - total height

model form.


On plots where the DBH increment measurements were made with


increment cores, no attempt was made to backdate the stand to


reconstruct a plausible initial measurement. Rather, past five year tree

basal area growth was assumed to be equal to the next five year

increment.


No plots of any kind were used that had been harvested between 
measurements. No plots were used that had measurement intervals less 
than four or greater than eight years. Plots that had been measured 
during the middle of the growing season were adjusted to get a 
"biological growth interval" on the basis of Jackson State growth study 
(Bawcom et. aI, 1961) This adjustment was applied to DBH growth only. 
Most of the plots that required this adjustment were measured during the 
summer months. Height growth for the year was presummed to be completed 
by April. There were no sample plots in our data sets that had been 
measured during the months when annual height growth was presummed to be 
occuring so no adjustments were necessary. For growth intervals that 
were not an even multiple of five years, the interval growth 
measurements were linearly adjusted to give an even five year growth 
measurement. 
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A maximum of six trees of a given species on any given plot were

selected as sample trees. Trees were initially sorted by species,

ranked by DBH, and then given a selection priority:


1.	 Total height, DBH, crown length, DBH growth, and height growth were

measured.


2.	 Same as above only height growth wasn't measured.


3.	 Either total height and/or crown lengths were est imat ed in which

case the tree wasn't used as a sample tree.


An attempt was subsequently made to select three trees below the median

DBH and three from above with trees of sampling priority 1 having


precedent over sampling priorities 2 or 3. If this wasn't possible, an

attempt was made to get either two or one tree from each side of the

median. If this wasn't possible, the plot was rejected for the species

being sampled.


All of the direct measurements on crown recession are coarse and 

limited to the Jackson State CFI plot set. Briefly, this data set is 
composed of approximately 140 plots that have been measured every five 
years since their establishment in 1958-1960. At the initial 
measurement, approximately half of the trees on each plot were measured 
for total height. At every measurement, a vigor code (based partially 
on crown ratio) was assigned to almost every tree on each plot. The 

vigor code is for a range in crown ratios of about 10 to 20 percent. On 
the last two remeasurements, some of these plots were subsampled for 
total height and had either height to the crown base or actual crown 

ratio's measured. Based on the last two measurements, it was found that 

the correlations between actual crown ratios and the midpoint crown 
ratio of each vigor class was quite satisfactory. Subsequently, on only 

those plots that had been subsampled for heights and crown ration on the 
last two remeasurements, all vigor codes for all five remeasurements on

each tree were converted to crown ratio estimates. To each tree


sampled, the actual crown ratio measurements were also added and a

linear regression of crown ratio on calendar year was estimated. On

trees with only two height measurements, height growth was assumed to be

linear over the total twenty year time interval. For trees with three

height measurements, a linear regression of height on calendar year was

estimated. Using both of the estimators, crown recession trends were

developed for sample trees.


APPENDIX II. 

ERROR MODEL SELECTION AND ESTIMATION SCENARIO 

In general, most models that are analyzed by statistical methods

contain provisions for error components as a means to account for model

inexactness. While not being definitive, the form in which the error

components enter the model can be classified as a) additive which is the

'usual' assumption that is made; b) multiplicative in some or all of the
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model coeffiicients in which case, the resulting model is referred to as

a random coefficient model; or c) some combination of a and b. The form

of the errror model postulated in the main report (as a multiplicative 
factor) can be viewed as a constrained case of a random coefficient 

regression model. 

A. ERROR MODEL SELECTION


Initially, the decision to express the form of the error term as a

multiplicative factor was based on an analysis of residuals from

preliminary model forms. Subsequently, two possible decompositions of

the error term were tested with primary emphasis being placed on the DBH

increment model. Data limitations prevented comparable tests with the

height growth model. With the definitions of the components given in

Table 4-a in Section IV, these models have the the following forms:


Model A-1.


Uijl = ai + bij + PI + aPil + bPijl + gijl


The "ap" and "bp" terms represent plot-~riod and tree-period


interactions respectively. The sets {ail. {bijL {PIL {aPilL {bPijl},

{gijl} are a~sume~ to be independently distributed with zero means and

var1ances ~a , 6b , etc., respectively. Variances and covariances of any


two observations {Uijl' ui'j'l'} follow directly from these assumptions.


Model A-2.


Uijl = ai + bij +rijl + gijl


We make the same assumptions as in A-1 only here, if periodic effects


are insignificant, rijl is a replication effect and the time period '1'

can be viewed as arbitrary.


The primary purpose in analyzing these two models is twofold: 1) to

estimate plot and tree variance components and 2) to determine if

calendar periods are significant sources of variation. Some estimate of

the plot and tree within plot variance terms are necessary to develop

modifier functions. With the benefit of hindsight, we feel that most of

the variation in the increment models (excluding the contribution of

measurement error) can be attributed to these two sources. If model A-1


seems appropriate which would indicate that actual calendar periods are 

significant source of variation, then efficiencies in estimation can be 

made by recognizing this source. The data available for modelling was 

collected for growth periods from 1952 to 1979. However, each potential 

five year period was not equally represented with most of the data being

collected in the late 60's and early 70's.


Autocorrelations


It is quite possible that the temporally sequenced random 

components are not independent and that some form of a serial 
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correlation structure might be imposed on these components. It is known

that in linear models with relatively simple autocorrelation structures,

ordinary least squares estimation techniques produces unbiased but

inefficient parameter estimates1. However, variance estimates may be

biased which is of concern in this analysis. Our analysis, described

below, indicates that periodic effects are negligable, at least during

the period for which the growth data was collected. In Model A-2, it may


be that the successive" replication" (rijl) terms are not serially

independent. However, testing such a hypothesis was not attempted

because for even weak tests, somewhere in the order of 10 to 15

succesive five year growth measurements on each tree would be neccesary

and secondly, there is no way of partitioning out the effects of the

replication components from the measurement error2.


We feel however that one serious source of autocorrelation is an

artificial one and attributable to the primary collection procedures

employed for most of the data: growth is estimated as the difference

between two successive tree measurements. If two successive growth

measurements are made on each tree (three tree measurements are made)

then both growth estimates have one tree measurement in common. If the

common tree measurement is "high", then the growth measurement error

component will be high for the first measurement and low for the second.

Some theoretical results are detailed in Section C of this appendix.


Analysis of Periodic Effects


Two separate and somewhat unrelated methods were utilized in

analy'zing the effects of calendar periods; one based on an analysis of

increment cores and the other based on the DBH increment model applied

to a data set consisting of multiple measurements on individual trees.


Increment ~ analysis of periodic effects


In the summer of 1977, a latitudinal transect was made across the 
redwood forest type in Mendocino County beginning at Fort Bragg and 
ending in the vicinity of North Spur. Eight sampling locations were 
selected; four being on ridgetops or upper slopes and four on lower 
slopes. Sampling locations were restricted to be in young growth forest 
conditions that had been undisturbed by logging. At each location, four

dominant or codominant redwood and Douglas fir trees were selected and

25 year increment cores were extracted. Ring widths were measured with

a dendorchronometer and tree diameters for the last 26 years were

reconstructed. From each tree, five successive estimates of five year

change in tree diameter squared were subsequently computed. For each

species, the following model provided a basis for analysis:


1. See Maddala,G.S.,Econometrics, 1977; McGraw-Hill.


2. One direct way that this could be accomplished would be to,

say, have all of the sample plots measured at least two times dur

ing the same day by different personnel. If this were done, then

the measurement component would be nested in the replications and

a partition could be accomplished. Practically however, it is un

likely that anyone would voluntarily be willing to do this.
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CDS5011 = a01. + a110T + a21oT2 + PI + eO
1l i=1,N; 1=1,5


with the following side condition


lPl = 0


where


CDS5il	 five year change in DBH squared for the ith tree during the Ith

time period (1=1 for 1952-1957, 1=2 for 1957~1962,etc)


ani	 tree specific parameters to be estimated


PI	 growth effect of period I (considered a fixed factor in this


analysis)


rand om error term
en


T	 equal to "1" for period one, "2" for period two, etc. 

The principal hypothesis of interest here is whether the pe riod ic


effects are significantly different from zero


for all	 1.

Ho: PI = 0


With respect to the DBH increment model described in Section VII, the

model here is assumed to represent both the structural component and the

combined plot-tree random factors. The form is not totally equivalent

to the DBH increment model. However, it does provide a plausible basis

for analyizing periodic impacts and presummably because of the

instruments and care made in the measurements, measurement error is

negligable. This model was analyzed two ways: 1) using observations as

they were recorded and 2) weighting each observation by a value

inversely proportional to the average growth of the corresponding tree.

This later method was done in an effort to produce approximately equal

variances for each tree that were approximately proportional to

predictions.


To test the hypothesis, the eil were assumed to be identical and

independently distributed normal random variables. The model was

initially estimated as stated and subsequently without the Pk terms. "F"

statistics were computed which turned out to be less than one for both

methods and both species and al',species combined. Hence, we concluded

that periodic effects were not significant during the calendar interval

that the data was collected. Expanding the model to analyze the

effects of periods in different locational and topographic settings

resulted in similar conclusions.


The reduced model without the periodic effects can be used to

provide independent estimates of the variances of the replication


components(rijl) in the DBH increment model. Eatimates of the variance 
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from the reduced increm2nt core model with residuals expressed as a

percent of predictions (~e ) is approximately equal to to the expression


222

~r I(1. + ~a + ~b )


in model A-2. In additive form, the estimates for 6'e2 were 110 for

redwood and 123 for Douglas fir. In proportionate form, the estimates

were .030 and .035 respectively.


DBH increment model analysis of periodic effects


An independent data set derived from the Jackson State Forest CFI

plot data (JSF data) was used extensively as a means of checking the

validity of assumptions and methods used in developing the DBH increment

models. Data sets were developed for both redwood and Douglas fir and

consisted of several plots with and equal number of trees of a given

species selected on each plot. Each tree selected had two growth

measurements available(the calendar periods were from the years 1960

1965 and 1974-1979). While this plot series had been measured five

times, the middle measurements lacked total height measurements.

Secondly, any analysis based on successive growth measurements would be

confounded by measurement error serial correlations previously

discussed.


In selecting candidate plots from this data set, those that had

been harvested during the first or terminal growth periods were

discarded. In selecting trees on these plots, candidate trees had to

have all of the necessary explanatory variables used in the DBH 
increment model measured and had to be living at the last remeasurement. 
This condition was relaxed slightly for trees that had been measured for 
height in 1960 and once again in 1979. Heights were linearly adjusted 
between these two measurements to estimate heights in 1974. In 
selecting trees from these plots, equal numbers of qualifying trees were 
selected from above and below the median DBH. Sample sizes were based 
on the scheme giving the maximum number of tree measurements under the 
restriction that equal numbers of trees had to be selected from each 
plot. For redwood, this produced 53 plots with eight trees per plot and 

for Douglas fir, 23 plots with six trees per plot. 

A number of approaches were used in developing the DBH increment

equation. These are described in the following section. For the JSF

data set (which wasn't used in the estimation procedure) the resulting

model was used to make predictions of CDS5, the differences between

actual and predicted values were computed as a percent of predictions

and subsequently analyzed using a nested random component Odel.


i
Procedures for accomplishing this have been widely discussed1. and

basically involve the following steps:


1. Scheffe (1959) describes the motivation for these t1pes of

models and an excellent synthesis is given by Searle (1969).
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1.)	 Partition the data in accordance with the parameter vector

associated with each random component and obtain least square

estimates of the reduced model.


2.)	 For the" residual" sums of squares associated with each reduced

model derive an expression for its expected mean square in terms of

the variance components.


3.)	 Solve the resulting system of equations to obtain variance


estimates of each component.


4.)	 If tests of inference are to be made, Satterthwaite's2 methods

could be utilized.


Both models A-1 and A-2 were analyzed in this manner. Tests of


inference were not ~tt~mpted as the estimate ?f the variance.of the

periodic component (~ ) 1n model A-1 was cons1stently negat1ve or

accounted for less th~n one percent of the total variation.


We concluded that calendar periods between 1952 and 1976 did not 
account for a significant amount of variation in the DBH increment model 
and that model A-2 would provide a reasonable basis for subsequent 
analyis is. 

B. DBH INCREMENT MODEL - ANALYSIS AND PARAMETER ESTIMATION


As indicated in Section IV, it is hypothesized that the random

components in the increment models are correlated with some of the

explanatory variables and consequently, direct applications of least

squares estimation techniques would result in biased parameter

estimates. This concern has been a major focal point in model

development because ignoring the problem results in simulated stand

yield estimates that are much lower in younger age classes than all

other forms of evidence would indicate and much higher in older age

classes. Instead of the characteristic sigmoid or allometric shapes,

the resulting yield estimates (even basal area) tended to be somewhat

exponential with maximum periodic growth rates culminating at 70 to 80

years for Douglas fir and somewhere past 100 years for redwood. Hence,

even without validation tests, the entire system wasn't considered

believable. The rapid growth rates of coastal stands tended to

accentuate the problem. Unfortunately, this hypothesis cannot be

analyzed by tests based on residuals from the fitted models because by

construction (at least in linear models and by analogy, in non-linear

models) they are uncorrelated with the explanatory variables.


In estimation, a two-step procedure suggested by Prais and

Houthakker (1955), was utilized to obtain approximate homogenous

residual variances: first the structural parameter vector was estimated

by ordinary least squares. The recipricols of corresponding predictions

from this model were then used as weights in a subsequent estimation.


2. See F.E. Satterthwaite, "An approximate distributic.n of esti

mates of variance components" Biometrics Bull. 1946. V2, pp110-114
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Usually, there was very little difference in the parameter estimates 
between the first and second estimation. Subsequent analysis of 
residuals were made in proportionate form. 

In estimating the DBH increment model


CDS5ijl = fd!xd,QdJ!1 + ai + bij + rijl + gijl}


we feel that parameter estimates that minimize the variance contribution


of the replication effect will produce the most appropriate model. Such

a model is "most" proportional to the growth trajectory of individual


trees. Ignoring measurement error, if ai + bij were known for each

sample tree, substituting these known values in the mode] and applying

direct least squares estimation to minimize the remaining residual sum

of squares would result in a model with these properties. However, as

these terms are unknown and by hypothesis, correlated with the

explanatory variables, different techniques are necesary to produce

unbiased parameter estimates. Possibilities considered for

accomplishing this are as follows.


1.)	 After transformation so that the entire error component is

expressed as an additive term, taking differences in arbitrary

growth observations on the same tree would effectively purge the

combined tree and plot effects from the sample, as under the

assumptions we have made, these factors are constant for any given

tree. Unfortunately, the only data that is even marginally

sufficient for this method is restricted to the JSF CFI plot data

and would require discarding over 80% of the data base. Moreover,

there is no apparent direct way to partition out the measurement

error components which indirect evidence indicates tends to

dominant this component.


2.)	 Another class of techniques that were considered are generally

known as "instrumental variable" methods (see Maddala, 1976). In

situations where the error terms are correlated with the

explanatory variables, the instrumental variable technique is to

find some other variable correlated with the explanatory variable

yet uncorrelated with the error term and make some form of

substitution. While providing a theoretical solution to the

problem, we haven't been able to conceiveof any variablesthat

would reasonably satisfythe requirements.


3.)	 A third method is an ad hoc one we have developed and can be

classified as an "iterative search" technique. If the least

squares estimates are presumed biased and in our case, in a known

direction, then we can systematically search over the surrounding

parameter space and attempt to find one that is "unbiased".

Procedures and criterion for this are explained in the next

section.


4.)	 The last method considered and employed to some extent in

estimation can be classed as a "data segregation" technique. If

some idea of the values of the plot and tree random components are

known, then the data could be stratified into "random" classes.
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Effectively, we seek some variable that is highly correlated with


the combined ai + bij term that can be incorporated into the model.

This method (which is a special form of an instrumental variable

technique) was also used as a form of evidence in analysis and will

be described in the following sections.


Search Methods


In the structural portion of the DBH increment model


CDS5 = (A1)(A2)(A3) 

where


A1 = (do + d1s)

d


A2 = !1 - exp«d2HT + d3(CL + HTG5))} 4


A3 = 1/!1 + exp(d5 + d6(CC66 + d7(cC40 -'CC66))ds)l 

some or maybe all of the direct least squares estimates of the parame
ters may be biased. Our thought was that by systematically searching 
through a parameter space in the vicinity of the direct least squares 
estimates, some exogenous comparisons at each iteration could be applied 
to indicate when an "unbiased" set of parameter estimates were obtained. 
As a criterion, we assume that the model that produces the minimum 
estimated replication variance is best. As most of the data contains 
single measurements on individual trees, there is no way to estimate 
this from the data used to develope the model. Instead, the JSF data 
sets were used and procedures previously described under the section on 
analysis of periodic effects were used. Both error models were used in 
this analysis after the inclusion of a fixed factor to represent the the 
mean deviation of the data set. Emphasis was placed on model A-2 as a 
primary check because periodic effects were considered insignificant. 
Even with this data set, direct estimates of the replication variance 
component could not be obtained. After accounting for tree and plot 
effects, expressions for expectations of the remaining mean square 
(MSERG) involved both replication and measurement variance components. 
However, if the measurement error is uncorrelated with everything else 
and unaffected by different model parameters, then differences in MSERG 
are a function of the replication variance estimates only. Hence, a 
model that producesa minimumMSERG is an indication of the "best" set 
of parameter estimates. . 

Intuitively(see figure 2 in Section IV) what we seek is a set of 
parameters that result in greater predictions for small trees and lesser 

ones for big trees. Rather than making searches independent of the 
data, we have employed a constrained procedure that still makes use of 

the sample. In this procedure, the parameters ~5-&S were set at their 
direct least squares estimates1. An artificial constant (b) was 

1. Initially, none of the parameters were fixed and iterative es

timates were made for all of them. However, most of the differ
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substituted for the parameter ~4. In subsequent s~arches, different 
values for the constant b were fixed, weighted two-step estimates for 

the parameters~o - &3 were obtained, and MSERG estimated with the JSF 
data subset. Minimum values of MSERG occured at values of b of 1.25 for 
redwood and 1.4 for Douglas fir. Ordinary least squares estimates were 
about 1.7 and 5.4 respectively. Also, in direct least squares estima
tion, ~2 was insignificantly different from zero for redwood and signi
ficant though negative for Douglas fir. Operationally, if the contribu
tion of current estimated height growth is ignored, a zero growth pred
iction results when the live crown ratio (CR) has the following value1 

CR = - &2/&3 

Hence, the ordinary least squares estimates were not considered logical.

Iterative estimates indicated that the "zero growth" crown ratio was


about 5% for redwood and 8% for Douglas fir which seems ~ priori plausi

ble.


Using resulting parameter estimates as the basic DBH increment

model essentially resulted in "more believable" simulated stand yield

estimates. Further, preliminary validation tests have indicated that

conformance of the model to actual plot growth is quite reasonable.

However, the method is admittedly ad hoc, probably inefficient, and pro

perties of the resulUng statistics are unknown. We felt there might be

two different interpretations of the procedure: a) even though it was ad

hoc, it seemed to work well in practice and remedied some known problems

with the model; b) all of the results were an artifact of the data and

we created more problems than we solved. Consequently, a different

approach was attempted to see if it supported the method.


Data Segregation Methods


In this method, what is desired is some variable that is correlated


ences in parameter estimates were accounted for in the coefficient


~7 and it resulted in estimates that were illogical. One in

terpretation of this parameter is that it represents part of a

system of weights for density indices at different proportions of

total tree height. Another interpretation is that in our sample,

the taller the tree, the greater the densi.ty difference between


proportionate amounts of tree height. Consequently, we felt that

the differences in this parameter estimate were an attempt of the

least squares algorithm to counter effect our manual attempts to

"bend" the regression surface. In other words, the initial res

tricted parameter space wasn't restrictive enough. Deleting this

term and having density effects be soley a function of the canopy

closure at 66% of tree height resulted in density related parame

ters hardly changing at all from their direct least squares values

in the subsequent iterations. Hence, the density parameters were

fixed. 

1. In actual operation of the model system, tre~s with crown ra
tios smaller the the "zero growth" crown ratio were presumed not 

to grow. 
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with the unobserved plot and tree effects to be used as a basis for

stratifying the data. While not being perfect, tree crown class was

used and an alternative model was analyzed. This model was the same as


the DBH increment model only the term "1 + w(:B)"was added as a multi

plicative factor Where w is a 1 by 3 vector having values


1'0'O for dominants


0,1,0 for codominants

0,0,1 j for intermediates


~ -1,-1,-1] for suppressed trees


and :B is a 3 by 1 parameter vector to be estimated.


Results from refitting the model in this form were not directly


comparable to previous estimates because not all trees or data sets had

crown class indices taken on potential sample trees. Consequently a

different and somewhat smaller sample was uspd to analyze this alterna

tive model form. We will denote the previous sample as S1 and this sam


ple as S2. To make the comparisons as simplistic as possible, the den

sity related parameters estimated with S1 were fixed in this anlysis.


Results for redwood in this analysis were similar to those obtained


with the iterative soulution. The parameter d5 was 1.06 and the remain

ing parameters were sufficiently close so that predictions from crown


class analysis (without the :B parameters) and the iterative solution

were very similar. For Douglas fir, all of the parameter estimates of :B 
were not significantly different from zero and the remaining parameter 

estimates were about the same as the ordinary least squares solution. 

This result was subsequently attributed to the very high degree of 

linear correlation between crown class and height. Mostof the small 

trees were suppressed and all of the larger ones were dominants. As one 

last check, an attempt was made to redraw a sample that had equal 

numbers of trees in each crown class in each possible 25 foot height 

class for Douglas fir (The redwood sample was fairly balanced and this 

analysis was not done for that species). This essentially resulted in a 

sample with tree heights from 50-125 feet. Parameter estimates with 

this sample were much more comparable with the iterative solution, the :B

parameters were significant, and the value of d5 was 1.54.


We interpreted these results as being supportive of the search

method previously described. Discrepancies between methods and data

sets were largely due to sample imbalances which were much more severe

for Douglas fir than redwood.


In summary, the iterative approach was used as a basis for parame


ter estimation because we could utilize a much larger sample basis than

the crown class segregation techniques. While the crown class parameter

estimates were significant and resulted in a model with relatively more

precision, this approach was not pursued for several reasons: a) the

calibration models described in Section VII are intended to accomplish

the same thing as adding a crown class variable to the structural por

tion of the model; b) in practice, we are faced with a problem of tree

crown class changing over time; c) possible shifts in the mean of the

the distribution of the combined tree and plot effects as trees get
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older are not totally eliminated and d) estimates of crown class are

somewhat subjective, inconsistent, and not totally independent of stand

conditions. Checks of plots with crown class estimates before and after

harvest operations indicated a substantial number of trees being reclas

sified into higher crown classes. We concluded that these added prob

lems would outweigh the potential benefits of this approach.


As one last model adjustment, growth estimates were made on all

trees for a single measurement of a1] sample plots where truncation of

the DBH measurement limit was not severe enough to distort the actual

within plot stocking. Missing measurements were estimated by the pro

cedures described in Appendix I. The average percent deviation of a]l

trees on each plot was computed, and the plot averages were then aver

aged. The resulting estimate was then used to adjust the coefficient

estimates of ~o and ~1' For redwood, the estimates obtained by the

iterative method were reduced by 7%. For Douglas fir, the reduction was

16%. These adjusted estimates are given in Table 4 in Section 8.


C. THE MAGNITUDE OF ~ffiASUREMENTERROR


Possible measurement error contamination of the statistics gen

erated in the development of increment models has been a major concern

in this study because all of our indirect attempts to assess the magni

tude of this factor indicate that it is a substantial source of varia

tion. Direct assessment is impossible because it would have required

all of the sample trees to be measured at least twice by different per

sonnel.


As a means for assessing the effect of measurement error, we first


consider the DBH's on a single tree at three points in time (D1,D2,D3)' 
Measurements on this tree (d1,d2,d3) are assumed to be made with error 

wi and can be represented as 

d. = D. + w.
1. 1. 1.


The following minimal set of assumptions are made


1. E[diJ = Di 
- 2

2 w.1. IID(O,(jw) 

3 E[Wi3J = ° 

The following results can subsequently be derived


2 2 2
E d. =D. + 6
[ 1. J 1. W


Hence, the estimate of tree diameter squared is biased. The expected

value of a growth estimate of change in diameter squared using using d1

and d2 is
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E[CDS52-1JE[(d2 + V2)2 - (d1 + V1)2J E D22 - D12E 

which is unbiased. The variance of a growth estimate is 

V[CDS52-1] E[d22 - d12 - E{d22 -d12}]2E 

2 212 
E 8 I (D2 + D1 )/21~w 

and the covariance between the two successive growth estimates d~ to 
measurement error is 

22 221 2 
CV (d3 1 -d2 ), (d2 - d1 )1 = -4D2 ~w 

or roughly one half the measurement error variance in absolute value. 

As an attempt to assess the magnitude of ~ 2, an experiment has 
been run twice at the University of California i~volving students in the 
undergraduate forest mensuration class. In this experiment, students 
were each assigned to measure DBH's on eight redwood trees from 11 to 47 
inches in diameter. Instructions vere designed to approximate field 
instructions used in permanent plot measurement (measurements were made 
with steel diameter tapes at a nail 4.5 feet off the ground). Sample 

varia~ces were computed for each tree and were taken to be an estimate 
of ~w. Results from the analysis of these data can be summarized as
follows: 

No significant correlations between tree size and sample variance 
were found at critical "alpha" levels of 0.15 or less. 

2	 Residuals about the sample mean of each tree tended to be leptokur
tic with most of the variation consistently due to one or two aber
rant measurements. 

3	 No evidence could be found to indicate individual students con
sistently under or overestimated DBH's. 

4	 Average sample variance over all all trees and all experiments were 
0.046 although the range was from 0.006 to 0.222 for individual

trees. Average sample variances for the first run of the experi

ment was 0.075 and the second was 0.0176.


5	 These sample variance estimates and the previous tests are them
selves somewhat biased and lacking in rigor due to confessed colla
boration among students in attempts to get the "right" measurements 
even after emphasizing that there are no right measurements. How
ever, it is currently the only available source of data that can be 
used to assess the magnitude of measurement error. 



In an effort to indicate rough orders of magnitude, results from

the increment core analysis and the JSF data were analyzed for redwood

in an additive error components model. Average DBH of the increment


core trees and the JSF data for redwood were approximately 20 inches.

For the JSF data. mean square error of the measurement error and repli

cation components was about 380 square inches. From the increment core

analysis, an estimate of the replication variance was 110 square inches.

Using a tree size of 20 inches, and a diameter measurement variance of

.046, an estimate of the measurement error variance is 8(202)(0.046) =

150. square inches. Thus, measurement error variance is about 50% 
larger than the replication variance although these results must be 

viewed in terms of the lack of adjustments for heteroscedasticity and 

the independent methods employed. In the redwood sample used to fit the

DBH increment model, the mean prediction was about 40 square inches. As

a proportion of this amount squared, the measurement variance is

150/(1600) = 0.09 From the increment analysis, the proportionate repli

cation variance is about 0.03.


While only being indicative, these results suggest that measurement

error is significant source of variation in data collected as differ

ences in tree measurements. We suspect that the relative differences in

variation between replication effects and measurements in height growth

is substantially greater than that indicated for DBH increment. Conse


quently, in future refinements of modelling efforts of the type

described in this report, we strongly suggest that added care and alter

native methods of collecting data (i.e. stem analysis) be given consid

erable attention.
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